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It is shown that many of the algebras arising in nonselective genetics are isotopes
of the algebras for particularly simple systems of inheritance. Moreover,
interesting aspects of the structure are preserved under the relevant isotopies.
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1. Introduction: genetic algebras and isotopes

THE OBJECT of this paper is to show that the algebras corresponding to certain
important families of genetic mechanisms are isotopic, and to examine the
reasons for, and consequences of, this relation.

In genetic algebras the symbols a0, alt..., an represent the different genetic
types (e.g. gametes or zygotes). We study the algebra of linear forms a = E/J^a,
over the complex numbers, with multiplication table

BiBj = 2 Yvfik, (1-1)

where yijk is the probability that a union of a type i and a type j produces a type
k. Here and in the following, £ denotes summation from 0 to n. Thus, y ^ ^ O
and Et Yijk = 1 f° r every pair (/,;). If co(a) = £, x,, we see that

o)(da)=9co(a), (o(a + b) = o)(a) + co(b), (o(ab) = (o(a)co(b).

An algebra that admits such a homomorphism to its base field is said to be baric.
The function u> is called the weight function, and its kernel, the set of elements of
weight 0, is denoted by 3if. In many genetic algebras, it is found that there is a
strictly descending chain of ideals JCQ = si (the given algebra), 3CX = 3C, and
%1, . . . , 3Cd = {0}, with %,+i a Kit obeying the multiplicative condition 3CxdCt c
%i+\. In this case, si is called a Schafer algebra. If we can find a chain satisfying
the above conditions, with dim (jK,IJCi+l) = 1 for i = 1,. . . , d - 1, then k is
called a Gonshor algebra. In the latter case, we can show that the algebra is
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2 1 6 TAN1A M. M. CAMPOS AND PHILIP HOLGATE

isomorphic to an algebra of linear forms Ey yfi with multiplication table

Q9 = 2 *//*£*, ^ = 1 , (1.2)

X,jk = 0 if either i = 0 and k <j or i s* 1 and k « / .

We have oi{T,iyfit) = yo> and the triangular/supertriangular form of the multi-
plication table (1.2) reveals the properties of the algebra and facilitates
calculation. If the principal powers 3f of JC form a chain satisfying the above
condition, si is called a special train algebra.

Isomorphic algebraic entities are mathematically the same. Their elements may
have different names or representations, but all additive and multiplicative
relations between the objects map faithfully from one entity to another. This is
useful in applications, because it allows us to work with a member of an
isomorphic class the form of which makes calculation simple or makes the
algebraic structure particularly clear.

Isotopy is a much weaker relation than isomorphism and is of importance when
we deal with less highly structured algebraic entities such as semigroups, near
rings, and nonassociative systems. Let two algebras si" and si* be defined on the
same vector space, multiplication being indicated by a circle (°) and a star (*),
respectively. If there exist three fixed nonsingular linear transformations P, Q,
and S, such that

aob = [(aP)*(bQ)]S, (1.3)

then sl° and si* are said to be isotopes. In comparison, isomorphism requires
that the two multiplication rules should be linked by a single nonsingular linear
transform T such that a ° b = [(sT) * (67)] 7""1. In particular, s&° is isomorphic to
an algebra with product rule [(aP)T* (bQ)T]ST~\ We can choose T=S and
note that every isotope of si* is isomorphic to a principal isotope, denned by a
relation (1.3) with S = I.

However, the fact that one algebra arising in genetics is an isotope of another is
usually not sufficient. If we begin with, for example, a baric or a Gonshor
algebra, it is highly desirable that the property should be preserved on passing
from one member of the isotopic class of interest to another.

Further details of the theory of genetic algebras can be obtained from the
monograph by Worz-Busekros (1980). Isotopy and its role in nonassociative
algebras is discussed by Albert (1942).

2. Mutation algebras

The 'natural' basis of the n +1 allelic, diploid gametic algebra at a single locus
consists of the symbols a0, a t , . . . , an denoting the alleles. In the absence of
mutation, the multiplication table is

al*aJ = i(al + aj). (2.1)

(The output of a zygote formed by the union of a type i and a type / will produce
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ALGEBRAIC ISOTOPY IN GENETICS 217

these gametes with equal probabilities.) Thus, to is defined by (ofa) = 1, the
kernal JC is spanned by the elements q = a0 — a, (i = 1, . . . , n), and q * q = 0 if
i,j 2» 1, and hence 3if * 3? = 0. We set q, = a0.

We introduce the mutation algebra by supposing that, before participating in
the formation of a zygote, the allele a, may undergo a spontaneous change to an
af, with probability mtl. (The probability that it remains unchanged is mu.) We
write a,/if = £y m,ya,, and note that m^ 2== 0, and for every i, Ey my = 1- The
mutation algebra is the symmetric principal isotope of (2.1), defined by

a, o ay = 3iM * ay/W (2.2)

LEMMA 1 The weight function w of the algebra (2.1), and hence the kernel 3C, is
invariant under M.

We have (o{aiM) = ct)(Ey î//S/) = E/m,y = l = a)(a,), and extend the result by
linearity. It follows that 9if ° 3if = 3if * 3C. Thus, the ideal structure of the mutation
algebra is the same as that of the algebra without mutation.

We next consider polyploidy. In 2m-ploid individuals, each gamete contains m
genes. If there are n + 1 alleles a0, 8\,... , an, the gametes can be written
agoa?' • • • a£" with E/P< = m. The vector space of linear forms in these monomials
is the symmetric tensor mth power of the space for diploidy. In the absence of
mutation, the product of the above elements and affaV • • • a%" is obtained by
combining them to form a zygote a%0+q°al1+<?1 • • • ap

n"
+q", then selecting m of its

genes at random. Hence,

As in the diploid case, we write Cb= a0 and q = a0- at for i s= 1. Then, the set of
linear forms in the gametic symbols, obtained by multiplying out the symbols
cf,°cf[' • • • c£\ with TnPi = rn, forms a basis for the polyploid algebra. The
multiplication rule can be obtained without calculation by noting that the 'union'
of this gametic form and cg°cf' • • • c"n~ is the zygotic form cgo+«oc^1+91 • • • cp

n-
+g".

The gametic output is then obtained by applying the operation of choosing m out
of 2m gametes to each term in the linear zygotic form, when expanded in terms of
the natural basis. The number of ways of choosing rt copies of the a, gene is the
same whether in the context of the 2m genes of the zygote or the m genes of the
gamete. Since this determines the factor involving a0- ai = q, the product will
contain a factor c?1+<71 • • • c%"+q". The remaining symbolic factor CQ must then be
raised to a power m - E,' A ~ £/ It (=Po + 1o - m), where E< denotes summation
from 1 to n. The numerator of the numerical multiplier is the number of ways this
number of a0 genes can be chosen from the p0 + q0 (which is equal to
2m - £/' pi - E/' qi) that are left after the factors a0 - a, have been included. This

/ Po + qo \ = (Po +
\po + q0 — ml \ m
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2 1 8 TANIA M. M. CAMPOS AND PHILIP HOLGATE

The denominator is the number of ways of choosing m genes from 2m. Thus,

(c%°(V • • • Cn-){cV>cV • • • c«-) = I2™) ' h + * ° W + « ° c ? I + « - . . . CP-+": (2.4)
\ m I \ m l

The product is zero if po + qo<m, that is, if T,l Pi + YH qi>m. We define a
function a by <o(c™) = 1, to = 0 if pt > 0 for any / = 1 , . . . , n. This is easily seen
to be a weight function. We now define Xj to be the space spanned by the
canonical basis elements c$°tfl • • • c£" with E/p/^7- Equation (2.4) shows
that each Xs is an ideal and that the strictly descending sequence XQ = si, Xx = X,
Xi, . .. satisfies the condition for a Schafer algebra. In fact, Xj = X1 and consists
of linear sums of terms each containing j factors from X. The canonical
multiplication in polyploid algebras has been derived in several ways using direct
computation (e.g. Holgate, 1966; Abraham, 1980, for two alleles; Gonshor, 1971,
for several).

We now extend the mutation mapping to the symmetric tensor power space.
Thus,

»a?> • • • a"n-)M = f[ fe m.aT.
1-0 \ j I

Since M leaves invariant the set of forms E^a* satisfying Y,,xt = 0, it also leaves
X invariant, and hence leaves invariant each power X*' (which is equal to Xt).

A mutation algebra for multiallelic polyploids can now be defined as a
symmetric principal isotope of that without mutation by setting

(ag-a?1 •••*#•)• (ag°a?' • • • a*) = [(ag»a?> • • • a^)M][aVaV • • • a?)M]. (2.5)

The above results can be summarized in the following theorem.

THEOREM 1 The genetic algebras for a single locus with multiple alleles, with all
possible nonsingular mutation matrices M, are isotopic. They admit a common
weight function (o, and the principal powers of X = ker co are identical in every
member of the isotopic class. In each case, the powers of X are ideals and X is
nilpotent, and hence all algebras of the isotopic class are special train algebras.

3. Modes of segregation

The mechanism described by equation (2.3) is chromosome segregation. If this
is replaced by

(ag-af' • • • aS")(ag°af • • • • a?)

msy ,s(p0 + ,„))/,(„ + , , ) \ ... /,(,„ + qm)} ...
m I n)+...+rm.m\ r0 J\ rx J \ rn I

(3-1)

with 5 = 2, we have chromatid segregation. The phenomenon of double reduction
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ALGEBRAIC ISOTOPY IN GENETICS 219

can be modelled by supposing that (2.3) or (3.1) occur with specified probabilities
8 and 1 - 6. It has been shown (Holgate, 1966) that the algebras for these types
of segregation, for all values of 6, are special isotopes. That is, they satisfy (1.3)
with P = Q = I. All mixtures of algebras of the type (3.1) for s = 1, 2, . . . are also
special isotopes of (2.3) and (3.1), although those with s>2 have no genetic
significance.

An alternative proof, which shows the reason for the result in biological terms,
is given below. The algebras si * and si° are special isotopes if, for all i and /,

a* ° 3) = (a. *3;)S =
k I k

That is, if

A-tjk = ZJ YVIs Ik-
I

If k^ and Yijk both depend on i and j only through i +j, we can write

Aj/A: = *-i+j.k> Yijk ~ Yi+j,k> "pk ~ 2J YpISlk-
II

Then, writing r = [ y ^ ] and A=[A,y], we have S = AT~1. This leads to the
following result.

LEMMA 2 Let <€ be the class of all commutative algebras that admit a basis {a,}
and multiplication table a^ = Ey A^a* such that (i) kljk depends on i and j only
through i+j and (ii) for which, if a,ay = E*Ai+yfcat, the matrix [A /+/t] is
nonsingular. Then, all members of <€ are specially isotopic.

In polyploid inheritance, with any mode of segregation, the gametic output of
the union of two gametes depends only on the total number of alleles of each
kind contained in the union. Hence, the condition (i) for special isotopy is
satisfied, and we have the following theorem.

THEOREM 2 The algebras defined by (3.1), and in particular the polyploid gametic
algebras for chromosome segregation, chromatid segregation, and mixtures of
them, are special isotopes. The powers of % are the same for all algebras of the
class, they are ideals, and JC is nilpotent. Hence, all algebras of the isotopic class
are special train algebras.

4. Recombination isotopes

A chromosome may be classified according to the alleles present at each of k
loci, indexed by the set of integers {1, 2, . . . , k} = K. For simplicity and without
real loss of generality, we suppose that there are just two alleles, A, and B,, at
locus i, and hence 2* kinds of chromosome. For every / c.K, the gametic type
with A, at locus i, if / e /, and B,, if /" e / (/ = KM), will be denoted by a(/). A
zygote carrying the unordered pair of gametes {a(/), a(7)} will be denoted by
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2 2 0 TANIA M. M. CAMPOS AND PHILIP HOLGATE

In the absence of recombination, the system is equivalent to that of a single
locus with 2* alleles. We could take a canonical basis: c(0) = a(0) and
c(7) = a(0) - a(7) (/ it 0) . Then we would obtain the star multiplication table

d(0) * d(0) = d(0), d(0) * d(7) = \d(l) (1*0),

d(I)*d(J) = 0 (I,J*0). (4.1)

We shall see below that it is preferable to choose the canonical basis

c(I) = 2 (-iya(J), a(I) = 2 (-iyc(/). (4.2)

Since c(r) = T,0+jsi(~iyd(J), or by direct calculation, we see that the multi-
plication table for this basis is the same as (4.1), namely,

c(0) * c(0) = c(0), c(0) • c(/) = £c(/) (7*0),
c(7)*c(7) = 0 (7,7*0). (4.3)

The multiplication of the zygotic symbols is given by the standard rules of
duplication:

a(7, 7) * a(L, M) = (a(7) * a(/), a(L) * a(M))
= i[a(7, L) + a(7, M) + a(J, L) + a(J, M)].

Transformation (4.2) is extended to the zygotic symbols by the formulae

-l)'+m(7., M). (4.4)

The canonical table for star multiplication in the zygotic algebra is

c(0, 0) * c(0, 0 ) = c(0, 0) , c(0, 0) * c(0,1) = ic(0, /) (/ * 0),- |

c(0, 7) * c(0, / ) = ic(7,7) (7,7^0), I (4.5)

* products involving c(I, J) are zero for 7,7 =£0. J

However, the effect of recombination is that an a(7, J) individual does not only
pass on a(7) or a(7) gametes to the next generation. For every subset U c K,
there is the probability that the loci of U on one chromosome will recombine with
those of U from the other, the complementary sets also combining, and that one
of the recombinant gametes will be passed on.

We define the recombination operator R(U) acting on the natural zygotic
symbols a (7, 7) by

a(7, J)R(U) = a(7 n U + J D 0,1 n 7 + 7 D U).

The effect of R(U) on the elements of the canonical basis (4.4) is

c(7,/)/?(io=2 2 (-i)'+>B 2 2 {-iy+tc(s,
L MJ s^Lnu+Mnu uu

If 5 and T are held constant, the powers of (-1) will add to zero except in the
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ALGEBRAIC ISOTOPY IN GENETICS 2 2 1

case where 5 = lnU + JnO and T = inO + JnU. Hence,

c(i,j)R(u) = (-iy+'-wC(inu + jnu,inu+jnu). (4.6)

In general, we consider a probability distribution {A(f/)} over the subsets U of K
corresponding to the possible modes of recombination, and define the recom-
bination operator „.

R = 2 k(U)R(U).

If we introduce a circle multiplication by the rule

a°b = (a*b)R, (4.7)

it represents inheritance at fc-linked loci with recombination according to the
probability distribution {k(U)}. The genetic algebra of inheritance with recom-
bination is thus a special isotope of that for inheritance without recombination.

Now consider the subspace Id L in the zygotic algebra, spanned by all c(I, J)
with / + / D L . In view of (4.5), IdL is an ideal in the star multiplication algebra,
which corresponds to inheritance without recombination. However, the union of
the argument sets on the right-hand side of equation (4.6) is / + / , independently
of U, so that even the general recombination operator R leaves invariant each
subspace IdL. This shows that the subspaces IdL are ideals for every circle
multiplication introduced by (4.7). Let us now define

Id,= U WL.

Then, 3C = Id1; 3C = Id,, JC is nilpotent, and every power is an ideal, in all the
circle recombination algebras. This establishes that they are all special train
algebras. The results are summarized in the following theorem.

THEOREM 3 The zygotic algebras for inheritance at k loci, with arbitrary crossover
distribution, are specially isotopic. The subspaces Id L are ideals in all algebras of
the class, T̂ = Id, is nilpotent, all its powers are ideals, and hence all algebras of
the class are special train algebras.

Linkage and recombination at k loci have been studied via genetic algebras in
other ways (e.g. Holgate, 1979, and references therein).

5. Selection isotopes

If the viability of the zygote aiy carrying gametes a, and at is vtj, and * denotes
multiplication in the nonselective algebra, then circle multiplication, defined by
a ° b = (a * b) V and a^V = v^, defines a special isotope which corresponds to
inheritance with selection. Unfortunately, a general set of constants i»y destroys
the ideal structure, including the property of being baric.

6. Discussion

In Sections 2-4, it has been shown that all the genetic algebras for mutation
(among polyploids), for different modes of segregation, and for recombination
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2 2 2 TAN1A M. M. CAMPOS AND PHILIP HOLGATE

among zygotic pairs of chromosomes can be defined as special or symmetric
principal isotopes of the algebras for inheritance without mutation, with
chromosome segregation, and without recombination, respectively. Population
genetics involves an essentially quadratic interaction between the parts of the
population playing male and female roles. The isotopies show that we can restrict
the analysis of the quadratic aspects of the very small number of cases, and obtain
the full range of modes of inheritance (mutation, partial double reduction, and
recombination) by linear applications after each generation.

The algebraically striking feature is that these linear applications preserve the
ideal X of codimension 1 in the genetic algebra, and its sequence of principal
powers ft*. Since, in the elementary case of each set, these powers satisfy the
conditions necessary for the algebra to be special train, the same is true for all
algebras of each isotopic class. This is equivalent to the assertion that mutation,
complex modes of segregation, and recombination affect only the details of the
algebraic structure of inheritance, without changing its basic framework.
Moreover, although it has not been done here because of the heavy notation that
would be involved, a class of polyploid zygotic algebras with mutation, partial
double reduction, and recombination can be constructed, every member of which
is isotopic to the zygotic polyploid algebra with no mutation or recombination,
and chromosome segregation.

In his study of isotopy, Albert (1942: §12 ff.) shows that, among isotopic classes
each member of which contains a multiplicative identity, it is often possible to
choose one which satisfies specified desirable conditions. The absence of a
multiplicative identity is an essential feature of genetic algebras. The present study
shows that even so, in a field of application, certain isotopic relations preserve
important aspects of structure, while enabling us to work with a simple member
of the isotopic class.
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